1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*! Ordering of bits within register elements.
`bitvec` structures are parametric over any ordering of bits within an element.
The `BitOrder` trait maps a cursor position (indicated by the `BitIdx` type) to an
electrical position (indicated by the `BitPos` type) within that element, and
also defines the order of traversal over an element.
The only requirement on implementors of `BitOrder` is that the transform function
from cursor (`BitIdx`) to position (`BitPos`) is *total* (every integer in the
domain `0 .. T::BITS` is used) and *unique* (each cursor maps to one and only
one position, and each position is mapped by one and only one cursor).
Contiguity is not required.
`BitOrder` is a stateless trait, and implementors should be zero-sized types.
!*/
use crate::{
index::{
BitIdx,
BitMask,
BitPos,
BitSel,
BitTail,
},
mem::BitMemory,
};
/** An ordering over an element.
# Usage
`bitvec` structures store and operate on semantic counts, not bit positions. The
`BitOrder::at` function takes a semantic ordering, `BitIdx`, and produces an
electrical position, `BitPos`.
# Safety
If your implementation violates any of the requirements on these functions, then
the program will become incorrect and have unspecified behavior. The best-case
scenario is that operations relying on your implementation will crash the
program; the worst-case is that memory access will silently become corrupt.
You are responsible for adhering to the requirements of these functions. In the
future, a verification function may be provided for your test suite; however, it
is not yet possible to verify your implementation at compile-time.
This is an `unsafe trait` to implement, because you are responsible for
upholding the state requirements. The types you manipulate have `unsafe fn`
constructors, because they require you to maintain correct and consistent
processes in order for the rest of the library to use them.
The implementations of `BitOrder` are trusted to drive safe code, and once data
leaves a `BitOrder` implementation, it is considered safe to use as the basis
for interaction with memory.
# Verification
Rust currently lacks Zig’s compile-time computation capability. This means that
`bitvec` cannot fail a compile if it detects that a `BitOrder` implementation is
invalid and breaks the stated requirements. `bitvec` does offer a function,
[`verify`], which ensures the correctness of an implementation. When Rust gains
the capability to run this function in generic `const` contexts, `bitvec` will
use it to prevent at compile-time the construction of data structures that use
incorrect ordering implementations.
The verifier function panics when it detects invalid behavior, with an error
message intended to clearly indicate the broken requirement.
```rust
use bitvec::{
index::{BitIdx, BitPos},
mem::BitMemory,
order::{self, BitOrder},
};
# use bitvec::{index::*, order::Lsb0};
pub struct Custom;
unsafe impl BitOrder for Custom {
fn at<M: BitMemory>(idx: BitIdx<M>) -> BitPos<M> {
// impl
# return Lsb0::at::<M>(idx);
}
}
#[test]
#[cfg(test)]
fn prove_custom() {
order::verify::<Custom>();
}
```
[`verify`]: fn.verify.html
**/
pub unsafe trait BitOrder {
/// Converts a semantic bit index into an electrical bit position.
///
/// This function is the basis of the trait, and must adhere to a number of
/// requirements in order for an implementation to be considered correct.
///
/// # Parameters
///
/// - `index`: The semantic index of a bit within an element `M`.
///
/// # Returns
///
/// The electrical position of the indexed bit within an element `M`. See
/// the `BitPos` documentation for what electrical positions are considered
/// to mean.
///
/// # Type Parameters
///
/// - `M`: The element type which the index and position describe.
///
/// # Requirements
///
/// This function must satisfy the following requirements for all possible
/// input and output values for all possible type parameters:
///
/// ## Totality
///
/// This function must be able to accept every input in the `BitIdx<M>`
/// value range, and produce a corresponding `BitPos<M>`. It must not abort
/// the program or return an invalid `BitPos<M>` for any input value in the
/// `BitIdx<M>` range.
///
/// ## Bijection
///
/// There must be an exactly one-to-one correspondence between input value
/// and output value. No input index may select from a set of more than one
/// output position, and no output position may be produced by more than one
/// input index.
///
/// ## Purity
///
/// The translation from index to position must be consistent for the
/// lifetime of the program. This function *may* refer to global state, but
/// that state **must** be immutable for the program lifetime, and must not
/// be used to violate the totality or bijection requirements.
///
/// ## Output Validity
///
/// The produced `BitPos<M>` must be within the valid range of that type.
/// Call sites of this function will not take any steps to constrain the
/// output value. If you use `unsafe` code to produce an invalid
/// `BitPos<M>`, the program is permanently incorrect, and will likely
/// crash.
///
/// # Usage
///
/// This function will only ever be called with input values in the valid
/// `BitIdx<M>` range. Implementors are not required to consider any values
/// outside this range in their function body.
fn at<M>(index: BitIdx<M>) -> BitPos<M>
where M: BitMemory;
/// Converts a semantic bit index into a one-hot selector mask.
///
/// This is an optional function; a default implementation is provided for
/// you.
///
/// The default implementation of this function calls `Self::at` to produce
/// an electrical position, then turns that into a selector mask by setting
/// the `n`th bit more significant than the least significant bit of the
/// element. `BitOrder` implementations may choose to provide a faster mask
/// production here, but they must satisfy the requirements listed below.
///
/// # Parameters
///
/// - `index`: The semantic index of a bit within an element `M`.
///
/// # Returns
///
/// A one-hot selector mask for the bit indicated by the index value.
///
/// # Type Parameters
///
/// - `M`: The storage type for which the mask will be calculated. The mask
/// must also be this type, as it will be applied to an element of `M` in
/// order to set, clear, or test a single bit.
///
/// # Requirements
///
/// A one-hot encoding means that there is exactly one bit set in the
/// produced value. It must be equivalent to `1 << Self::at::<M>(place)`.
///
/// As with `at`, this function must produce a unique mapping from each
/// legal index in the `M` domain to a one-hot value of `M`.
#[inline]
fn select<M>(index: BitIdx<M>) -> BitSel<M>
where M: BitMemory {
Self::at::<M>(index).select()
}
/// Constructs a multi-bit selector mask for batch operations on a single
/// memory element `M`.
///
/// The default implementation of this function traverses the index range,
/// converting each index into a single-bit selector with `Self::select` and
/// accumulating into a combined register value.
///
/// # Parameters
///
/// - `from`: The inclusive starting index for the mask.
/// - `upto`: The exclusive ending index for the mask.
///
/// # Returns
///
/// A bit-mask with all bits corresponding to the input index range set high
/// and all others set low.
///
/// # Type Parameters
///
/// - `M`: The storage type for which the mask will be calculated. The mask
/// must also be this type, as it will be applied to an element of `M` in
/// order to set, clear, or test all the selected bits.
///
/// # Requirements
///
/// This function must always be equivalent to
///
/// ```rust,ignore
/// (from .. upto)
/// .map(1 << Self::at::<M>)
/// .fold(0, |mask, sel| mask | sel)
/// ```
#[inline]
fn mask<M>(
from: impl Into<Option<BitIdx<M>>>,
upto: impl Into<Option<BitTail<M>>>,
) -> BitMask<M>
where
M: BitMemory,
{
let (from, upto) = match (from.into(), upto.into()) {
(None, None) => return BitMask::ALL,
(Some(from), None) => (from, BitTail::<M>::END),
(None, Some(upto)) => (BitIdx::<M>::ZERO, upto),
(Some(from), Some(upto)) => (from, upto),
};
BitIdx::<M>::range(from, upto).map(Self::select::<M>).sum()
}
}
/// Traverses an element from `MSbit` to `LSbit`.
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Msb0;
unsafe impl BitOrder for Msb0 {
#[cfg_attr(not(tarpaulin_include), inline(always))]
fn at<M>(index: BitIdx<M>) -> BitPos<M>
where M: BitMemory {
unsafe { BitPos::new_unchecked(M::MASK - index.value()) }
}
#[cfg_attr(not(tarpaulin_include), inline(always))]
fn select<M>(index: BitIdx<M>) -> BitSel<M>
where M: BitMemory {
/* Set the MSbit, then shift it down. The left expr is const-folded.
Note: this is not equivalent to `1 << (mask - index)`, because that
requires a runtime subtraction, but the expression below is only a
single right-shift.
*/
unsafe { BitSel::new_unchecked((M::ONE << M::MASK) >> index.value()) }
}
#[inline]
fn mask<M>(
from: impl Into<Option<BitIdx<M>>>,
upto: impl Into<Option<BitTail<M>>>,
) -> BitMask<M>
where
M: BitMemory,
{
let from = from.into().unwrap_or(BitIdx::ZERO).value();
let upto = upto.into().unwrap_or(BitTail::END).value();
debug_assert!(upto >= from, "Ranges must run from low index to high");
let ct = upto - from;
if ct == M::BITS {
return BitMask::ALL;
}
// 1. Set all bits high.
// 2. Shift right by the number of bits in the mask. These are now low.
// 3. Invert. The mask bits (at MSedge) are high; the rest are low.
// 4. Shift right by the distance from MSedge.
unsafe { BitMask::new(!(M::ALL >> ct) >> from) }
}
}
/// Traverses an element from `LSbit` to `MSbit`.
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Lsb0;
unsafe impl BitOrder for Lsb0 {
#[cfg_attr(not(tarpaulin), inline(always))]
fn at<M>(index: BitIdx<M>) -> BitPos<M>
where M: BitMemory {
unsafe { BitPos::new_unchecked(index.value()) }
}
#[cfg_attr(not(tarpaulin), inline(always))]
fn select<M>(index: BitIdx<M>) -> BitSel<M>
where M: BitMemory {
unsafe { BitSel::new_unchecked(M::ONE << index.value()) }
}
#[inline]
fn mask<M>(
from: impl Into<Option<BitIdx<M>>>,
upto: impl Into<Option<BitTail<M>>>,
) -> BitMask<M>
where
M: BitMemory,
{
let from = from.into().unwrap_or(BitIdx::ZERO).value();
let upto = upto.into().unwrap_or(BitTail::END).value();
debug_assert!(upto >= from, "Ranges must run from low index to high");
let ct = upto - from;
if ct == M::BITS {
return BitMask::ALL;
}
// 1. Set all bits high.
// 2. Shift left by the number of bits in the mask. These are now low.
// 3. Invert. The mask bits at LSedge are high; the rest are low.
// 4. Shift left by the distance from LSedge.
unsafe { BitMask::new(!(M::ALL << ct) << from) }
}
}
/** A default bit ordering.
Typically, your platform’s C compiler uses most-significant-bit-first ordering
for bitfields. The Msb0 bit ordering and big-endian byte ordering are otherwise
completely unrelated.
**/
#[cfg(target_endian = "big")]
pub type LocalBits = Msb0;
/** A default bit ordering.
Typically, your platform’s C compiler uses least-significant-bit-first ordering
for bitfields. The Lsb0 bit ordering and little-endian byte ordering are
otherwise completely unrelated.
**/
#[cfg(target_endian = "little")]
pub type LocalBits = Lsb0;
#[cfg(not(any(target_endian = "big", target_endian = "little")))]
compile_fail!(concat!(
"This architecture is currently not supported. File an issue at ",
env!(CARGO_PKG_REPOSITORY)
));
/** Verifies a `BitOrder` implementation’s adherence to the stated rules.
This function checks some `BitOrder` implementation’s behavior on each of the
`BitMemory` types it must handle, and reports any violation of the rules that it
detects.
# Type Parameters
- `O`: The `BitOrder` implementation to test.
# Parameters
- `verbose`: Sets whether the test should print diagnostic information to
`stdout`.
# Panics
This panics if it detects any violation of the `BitOrder` implementation rules
for `O`.
**/
#[cfg(test)]
pub fn verify<O>(verbose: bool)
where O: BitOrder {
verify_for_type::<O, u8>(verbose);
verify_for_type::<O, u16>(verbose);
verify_for_type::<O, u32>(verbose);
verify_for_type::<O, usize>(verbose);
#[cfg(target_pointer_width = "64")]
verify_for_type::<O, u64>(verbose);
}
/** Verifies a `BitOrder` implementation’s adherence to the stated rules, for
one register type.
This function checks some `BitOrder` implementation against only one of the
`BitMemory` types that it will encounter. This is useful if you are implementing
an ordering that only needs to be concerned with a subset of the types, and you
know that you will never use it with the types it does not support.
# Type Parameters
- `O`: The `BitOrder` implementation to test.
- `M`: The `BitMemory` type for which to test `O`.
# Parameters
- `verbose`: Sets whether the test should print diagnostic information to
`stdout`.
# Panics
This panics if it detects any violation of the `BitOrder` implementation rules
for the combination of input types and index values.
**/
#[cfg(test)]
pub fn verify_for_type<O, M>(verbose: bool)
where
O: BitOrder,
M: BitMemory,
{
use core::any::type_name;
let mut accum = BitMask::<M>::ZERO;
let oname = type_name::<O>();
let mname = type_name::<M>();
for n in 0 .. M::BITS {
// Wrap the counter as an index.
let idx = unsafe { BitIdx::<M>::new_unchecked(n) };
// Compute the bit position for the index.
let pos = O::at::<M>(idx);
if verbose {
#[cfg(feature = "std")]
println!(
"`<{} as BitOrder>::at::<{}>({})` produces {}",
oname,
mname,
n,
pos.value(),
);
}
// If the computed position exceeds the valid range, fail.
assert!(
pos.value() < M::BITS,
"Error when verifying the implementation of `BitOrder` for `{}`: \
Index {} produces a bit position ({}) that exceeds the type width \
{}",
oname,
n,
pos.value(),
M::BITS,
);
// Check `O`’s implementation of `select`
let sel = O::select::<M>(idx);
if verbose {
#[cfg(feature = "std")]
println!(
"`<{} as BitOrder>::select::<{}>({})` produces {}",
oname, mname, n, sel,
);
}
// If the selector bit is not one-hot, fail.
assert_eq!(
sel.value().count_ones(),
1,
"Error when verifying the implementation of `BitOrder` for `{}`: \
Index {} produces a bit selector ({}) that is not a one-hot mask",
oname,
n,
sel,
);
// Check that the selection computed from the index matches the
// selection computed from the position.
let shl = pos.select();
// If `O::select(idx)` does not produce `1 << pos`, fail.
assert_eq!(
sel,
shl,
"Error when verifying the implementation of `BitOrder` for `{}`: \
Index {} produces a bit selector ({}) that is not equal to `1 << \
{}` ({})",
oname,
n,
sel,
pos.value(),
shl,
);
// Check that the produced selector bit has not already been added to
// the accumulator.
assert!(
!accum.test(sel),
"Error when verifying the implementation of `BitOrder` for `{}`: \
Index {} produces a bit position ({}) that has already been \
produced by a prior index",
oname,
n,
pos.value(),
);
accum.insert(sel);
if verbose {
#[cfg(feature = "std")]
println!(
"`<{} as BitOrder>::at::<{}>({})` accumulates {}",
oname, mname, n, accum,
);
}
}
// Check that all indices produced all positions.
assert_eq!(
accum,
BitMask::ALL,
"Error when verifying the implementation of `BitOrder` for `{}`: The \
bit positions marked with a `0` here were never produced from an \
index, despite all possible indices being passed in for translation: \
{}",
oname,
accum,
);
// Check that `O::mask` is correct for all range combinations.
for from in BitIdx::<M>::range_all() {
for upto in BitTail::<M>::range_from(from) {
let mask = O::mask(from, upto);
let check = BitIdx::<M>::range(from, upto)
.map(O::at::<M>)
.map(BitPos::<M>::select)
.sum::<BitMask<M>>();
assert_eq!(
mask,
check,
"Error when verifying the implementation of `BitOrder` for \
`{o}`: `{o}::mask::<{m}>({f}, {u})` produced {bad}, but \
expected {good}",
o = oname,
m = mname,
f = from,
u = upto,
bad = mask,
good = check,
);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn verify_impls() {
verify::<Lsb0>(cfg!(feature = "testing"));
verify::<Msb0>(cfg!(feature = "testing"));
struct DefaultImpl;
unsafe impl BitOrder for DefaultImpl {
fn at<M>(index: BitIdx<M>) -> BitPos<M>
where M: BitMemory {
unsafe { BitPos::new_unchecked(index.value()) }
}
}
verify::<DefaultImpl>(cfg!(feature = "testing"));
}
}