1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*! A fixed-size region viewed as individual bits, corresponding to `[bool]`.
You can read the language’s [array fundamental documentation][std] here.
This module defines the [`BitArray`] immediate type, and its associated support
code.
`BitArray` has little behavior or properties in its own right. It serves solely
as a type capable of being used in immediate value position, and delegates to
`BitSlice` for all actual work.
[`BitArray`]: struct.BitArray.html
[std]: https://doc.rust-lang.org/std/primitive.array.html
!*/
use crate::{
order::{
BitOrder,
Lsb0,
},
slice::BitSlice,
view::BitView,
};
use core::{
marker::PhantomData,
mem::MaybeUninit,
slice,
};
/* Note on C++ `std::bitset<N>` compatibility:
The ideal API for `BitArray` is as follows:
```rust
struct BitArray<O, T, const N: usize>
where
O: BitOrder,
T: BitStore,
N < T::MAX_BITS,
{
_ord: PhantomData<O>,
data: [T; crate::mem::elts::<T>(N)],
}
impl<O, T, const N: usize> BitArray<O, T, N>
where
O: BitOrder,
T: BitStore,
{
pub fn len(&self) -> usize { N }
}
```
This allows the structure to be parametric over the number of bits, rather than
a scalar or array type that satisfies the number of bits. Unfortunately, it is
inexpressible until the Rust compiler’s const-evaluation engine permits using
numeric type parameters in type-level expressions.
*/
/** An array of individual bits, able to be held by value on the stack.
This type is generic over all `Sized` implementors of the `BitView` trait. Due
to limitations in the Rust language’s const-generics implementation (it is both
unstable and incomplete), this must take an array type parameter, rather than a
bit-count integer parameter, making it inconvenient to use. The [`bitarr!`]
macro is capable of constructing both values and specific types of `BitArray`,
and this macro should be preferred for most use.
The advantage of using this wrapper is that it implements `Deref`/`Mut` to
`BitSlice`, as well as implementing all of `BitSlice`’s traits by forwarding to
the bit-slice view of its contained data. This allows it to have `BitSlice`
behavior by itself, without requiring explicit `.as_bitslice()` calls in user
code.
> Note: Not all traits may be implemented for forwarding, as a matter of effort
> and perceived need. Please file an issue for any additional traits that you
> need to be forwarded.
# Limitations
This always produces a bit-slice that fully spans its data; you cannot produce,
for example, an array of twelve bits.
# Type Parameters
- `O`: The ordering of bits within memory elements.
- `V`: Some amount of memory which can be used as the basis for a `BitSlice`
view. This will usually be an array `[T: BitStore; N]`.
# Examples
This type is useful for marking that some value is always to be used as a
bit-slice.
**/
/// ```rust
/// use bitvec::prelude::*;
///
/// struct HasBitfields {
/// header: u32,
/// // creates a type declaration
/// fields: bitarr!(for 20, in Msb0, u8),
/// }
///
/// impl HasBitfields {
/// pub fn new() -> Self {
/// Self {
/// header: 0,
/// // creates a value object. the type paramaters must be repeated.
/// fields: bitarr![Msb0, u8; 0; 20],
/// }
/// }
///
/// /// Access a bit region directly
/// pub fn get_subfield(&self) -> &BitSlice<Msb0, u8> {
/// &self.fields[.. 4]
/// }
///
/// /// Read a 12-bit value out of a region
/// pub fn read_value(&self) -> u16 {
/// self.fields[4 .. 16].load()
/// }
///
/// /// Write a 12-bit value into a region
/// pub fn set_value(&mut self, value: u16) {
/// self.fields[4 .. 16].store(value);
/// }
/// }
/// ```
/**
# Eventual Obsolescence
When const-generics stabilize, this will be modified to have a signature more
like `BitArray<O, T: BitStore, const N: usize>([T; elts::<T>(N)]);`, to mirror
the behavior of ordinary arrays `[T; N]` as they stand today.
[`bitarr!`]: ../../macro.bitarr.html
**/
#[repr(transparent)]
#[derive(Clone, Copy)]
pub struct BitArray<O = Lsb0, V = usize>
where
O: BitOrder,
V: BitView + Sized,
{
/// Bit ordering when viewed as a bitslice.
_ord: PhantomData<O>,
/// The wrapped data store.
data: V,
}
impl<O, V> BitArray<O, V>
where
O: BitOrder,
V: BitView + Sized,
{
/// Constructs a new `BitArray` with zeroed memory.
#[cfg_attr(not(tarpaulin), inline(always))]
pub fn zeroed() -> Self {
Self {
_ord: PhantomData,
data: unsafe { MaybeUninit::zeroed().assume_init() },
}
}
/// Constructs a new `BitArray` from a data store.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
/// ```
#[cfg_attr(not(tarpaulin), inline(always))]
pub fn new(data: V) -> Self {
Self {
_ord: PhantomData,
data,
}
}
/// Removes the bit-array wrapper, returning the contained data.
///
/// # Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let bitarr: BitArray<LocalBits, [usize; 1]> = bitarr![0; 30];
/// let native: [usize; 1] = bitarr.unwrap();
/// ```
#[cfg_attr(not(tarpaulin), inline(always))]
pub fn unwrap(self) -> V {
self.data
}
/// Views the array as a bit-slice.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_bitslice(&self) -> &BitSlice<O, V::Store> {
self.data.view_bits::<O>()
}
/// Views the array as a mutable bit-slice.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, V::Store> {
self.data.view_bits_mut::<O>()
}
/// Views the array as a slice of its underlying elements.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_slice(&self) -> &[V::Store] {
unsafe {
slice::from_raw_parts(
&self.data as *const V as *const V::Store,
V::const_elts(),
)
}
}
/// Views the array as a mutable slice of its underlying elements.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_mut_slice(&mut self) -> &mut [V::Store] {
unsafe {
slice::from_raw_parts_mut(
&mut self.data as *mut V as *mut V::Store,
V::const_elts(),
)
}
}
/// Views the array as a slice of its raw underlying memory type.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_raw_slice(&self) -> &[V::Mem] {
unsafe {
slice::from_raw_parts(
&self.data as *const V as *const V::Mem,
V::const_elts(),
)
}
}
/// Views the array as a mutable slice of its raw underlying memory type.
#[inline(always)]
#[cfg(not(tarpaulin_include))]
pub fn as_raw_mut_slice(&mut self) -> &mut [V::Mem] {
unsafe {
slice::from_raw_parts_mut(
&mut self.data as *mut V as *mut V::Mem,
V::const_elts(),
)
}
}
}
mod ops;
mod traits;
#[cfg(test)]
mod tests {
use super::*;
use crate::prelude::*;
#[test]
fn create_arrays() {
macro_rules! make {
($($elts:literal),+ $(,)?) => { $(
let _ = BitArray::<LocalBits, [u8; $elts]>::zeroed();
let _ = BitArray::<LocalBits, [u16; $elts]>::zeroed();
let _ = BitArray::<LocalBits, [u32; $elts]>::zeroed();
let _ = BitArray::<LocalBits, [usize; $elts]>::zeroed();
#[cfg(target_pointer_width = "64")] {
let _ = BitArray::<LocalBits, [u64; $elts]>::zeroed();
}
)+ };
}
make!(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
);
}
#[test]
fn wrap_unwrap() {
let data: [u8; 15] = *b"Saluton, mondo!";
let bits = BitArray::<LocalBits, _>::new(data);
assert_eq!(bits.unwrap(), data);
}
}